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Pseudoresonant interaction between flame and upstream velocity fluctuations
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This work is dedicated to the analysis of the delicate details of the effect of upstream velocity fluctuations
on the flame propagation speed. The investigation was carried out using the Sivashinsky model of cellulariza-
tion of hydrodynamically unstable flame fronts. We identified the perturbations of the steadily propagating
flames which can be significantly amplified over finite periods of time. These perturbations were used to model
the effect of upstream velocity fluctuations on the flame front dynamics and to study a possibility to control the

flame propagation speed.
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I. INTRODUCTION

Experiments show that cellularization of flames results in
an increase of their propagation speed. In order to understand
and exploit this phenomenon, we study the evolution of
flame fronts governed by the Sivashinsky equation

o0 =607 =0,0- T MO 4 ) (1)

for —o<x<oo, t>0. Here ®(x,r) is the perturbation
of the plane flame front, f(x,7) is the the force term,
H[P]=7" [ (x— &' DP(&,1)dé is the Hilbert transforma-
tion, and y=1-p,/p, is the contrast in densities of burnt and
unburnt gases p, and p,, respectively. Initial perturbation
®(x,0) is given.

Equation (1) governs evolution of the perturbation ®(x,7)
of the plane flame front moving with the planar flame speed
uy, relative to the burnt gases. Thus, at a given instant of time
t, the surface of the flame front is described as the distance
t+®(x,7) from a reference plane. For the unity Lewis num-
ber, space coordinates are expressed in units of the flame
front width 8,=D,/u, and time is in units of y28,/u,
where D, is the thermal diffusivity of the system.

The equation without the force term was obtained in [1]
as an asymptotic mathematical model of cellularization of
flames subject to the hydrodynamic flame instability. The
force term was suggested in [2] in order to account for the
effect of the upstream turbulence on the flame front. It is
equal to the properly scaled turbulent fluctuations of the ve-
locity field of the unburned gas. In [3,4], Eq. (1) was further
refined in order to include effects of the second order in 7.
However, as mentioned in [4], this modification can be com-
pensated upon a Galilean transformation combined with a
nonsingular scaling. Thus, we have chosen to remain within
the first order of accuracy in vy of the original Sivashinsky
model (1) as it should have the same qualitative properties as
the more quantitatively accurate one.

The asymptotically stable solutions to the Sivashinsky
equation with f(x,f) =0 corresponding to the steadily propa-
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gating cellular flames do exist and are given by formula

N
Dy, (x,1) = Viy 1+ 2>, In|cosh 2ab,/L — cos 2mx/L

n=1

>

)

discovered in [5]. Here, real L>0 and integer N from within
the range 0SN<N,=ceil(yL/8m+1/2)—1 are otherwise ar-
bitrary  parameters. Also, Vy, =27NL'(y-47NL™),
by,by, ... ,by satisfy a system of nonlinear algebraic equa-
tions available elsewhere, and ceil(x) is the smallest integer
not less than x. Functions (2) have a distinctive set of N
complex  conjugate  pairs of  poles z,==%ib,
n=1,...,N, and are called the steady coalescent pole solu-
tions, respectively.

The steady coalescent pole solutions (2) with the maxi-
mum possible number N=N; of poles were found to be as-
ymptotically, for r— oo, stable if the wavelength of the per-
turbations does not exceed L; see [6]. However, in spite of
their asymptotic stability, there are perturbations of these so-
Iutions which can be hugely amplified over finite intervals of
time, resulting in significant transients; see [7]. These pertur-
bations are nonmodal, because they cannot be represented by
the single eigenmodes of the linearized Sivashinsky
equation.

Note that L is an independent parameter in Eq. (2). Earlier
numerical experiments (see, e.g., [8]) revealed that there is
no particular period L inherent to Eq. (1). Generally speak-
ing, numerical solutions to Eq. (1) in large, but finite com-
putational domains, stabilize to Eq. (2) with the period L
coinciding with the size of the computational domain. This
makes it reasonable to study the periodic solutions to Eq. (1)
with the period L considered as an independent parameter.
Thus, in what follows we are interested in solutions (2) with
N=N; and retain the index L only. Also, in all reported cal-
culations y=0.8. Here, the computational domain is consid-
ered to be large if it is much greater than the wavelength
87/ y of the harmonic, which is the most amplified one in the
Darrieus-Landau instability.

In Sec. II we calculate the most amplifiable nonmodal
perturbations to the asymptotically stable cellular solutions
of the Sivashinsky equation. In Sec. III we reinforce numeri-
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cal investigations of Sec. II with the analytical analysis of a
local approximation to the linearized Sivashinsky equation,
which was suggested in [9]. Also, this analysis provides a
test case to validate numerical studies of the response of the
flame front to stochastic forcing or noise presented in Sec.
IV. In particular, we investigate a possibility to model the
stochastic forcing as a random sequence of the most ampli-
fiable nonmodal perturbations of the Sivashinsky equation.

II. LARGEST GROWING PERTURBATIONS
A. Linear analysis

Substituting ®(x,7) =D, (x,1)+ @(x,t) into (1) for f(x,1)
=0 and linearizing it with respect to the L-periodic pertur-
bations ¢(x,?), one obtains

&td) = ((?XCDL)O”X¢ + axxd) - %/(QXH[Qb] = AL¢,

$(x,0) = D(x,0) - D1 (x,0). 3)
The operator A, generates the evolution operator e™L,
which provides the solution to Egs. (3) in the form
Plx, ) =e"Lp(x,0).
Assuming that the polar decomposition of the evolution
operator does exist, we write it as

e =US(1), (4)

where () is a partially isometric and S(f)=[(e"4r)"e"L]"?
is the nonnegative self-adjoint operator; see, e.g., [10]. The
partial isometry of U(z) implies that it preserves the norm
when mapping between the sets of values of (e”‘L)" and
ei—ie., |U(t)p||=|¢ll. Then, under certain conditions,
| b(x,1)||=]|S() p(x,0)|| and for the 2-norm the

SUP (x.0) e DA ([ S (1) B(x, 0)[| X || p(x, 0)[| "}

is equal to the largest eigenvalue o(¢) of S(¢). This eigen-
value is associated with the eigenvector #,(x,?) of S(z). Here
(e"L)" denotes the operator adjoint to AL and D(e"L) stands
for the domain of definition of eL.

The eigenvectors #,(x,) of S(¢) are mutually orthogonal
at any given time r=¢" and can be used as a basis in the space
of the admissible initial conditions ¢(x,0)=="_ c,(0,")
X h,(x,£7). Then, the associated eigenvalues ,(t) provide
the magnitudes of amplification of the ,(x,7") components
of the initial condition ¢(x,0) by the time instance ", Note
that for Egs. (3) the 2-norm of the perturbation ¢(x,?) is just
its energy and that the eigenvalues o,(f), a=1,2,..., and
eigenvectors ,(x,7) of S(¢) are the singular values and the
right singular vectors of e™, respectively.

According to [11], the Fourier image A; of the operator
A, is defined by the (k,[)th entry of its double-infinite
(=00 < k,I <) matrix
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FIG. 1. Twelve largest singular values of e for L=40.
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where &, is the Kronecker’s symbol. By limiting our con-
sideration to the first K harmonics, we approximate our
double-infinite matrix A~L with the (2K+1) X (2K+1) matrix
A~L(K), whose entries coincide with those of A~L for —-K=<k,
. 0 .
I<K. Then, the matrix e\ K>~e’7‘L can be effectively evalu-
ated by the scaling and squaring algorithm with a Padé ap-

proximation. Eventually, the required estimations of o ,(¢)
and Fourier images of i,(x,7) can be obtained through the

singular-value decomposition (SVD) of e’AL(K); see, e.g., [12].
Indeed, if the SVD of ™ is given by
A = W BOV()”, (6)

where W(r), V(¢) are unitary and B(z) is the non-negative
diagonal matrix, then the matrices

U =WV, S@=VOBOW) (1)

satisfy the adequate finite-dimensional projection of the polar

decomposition (4) and the eigenvalues o,(7), a=1,2,..., and
eigenvectors ,(x,r) of S(r) are just the singular values and
Z.ANL(K)

the Fourier syntheses of the right singular vectors of e ,
respectively.

Graphs showing dependence of a few largest singular val-
ues of e versus time are shown in Fig. 1. One may see that
values of (1), @=1,2, for large enough ¢ match the estima-
tion of the largest possible amplification of the perturbations
¢(x,1) obtained in [7] by a different method. An even more
impressive observation is that the dimension of the subspace
of the significantly amplifiable perturbations is very low. Per-
turbations of only two types can be amplified by about 10°
times.

The initial conditions ¢(x,0), which would be the most
amplified once by =100, 300, and 10°—i.e., ¢,(x,t")—are
depicted in Fig. 2. The dominating singular modes #,(x,?)
stabilize to some limiting functions for #>300. For example,
their graphs for r=500 and =10 are indistinguishable in
Fig. 2. However, they vary in time significantly when
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FIG. 2. Right singular vectors of ez, corresponding to the six
largest o,(f) for r=100 (dotted line), 300 (dashed line), and 103
(solid line), are given in pairs of a symmetric and asymmetric one
for L=407. Here 0,(10%)=~9.2X 103 and 7.4 X 10’ for a=1,2, re-
spectively. max{o (") =5.7 X 10? and 3.3 X 10° for a=3,4, respec-
tively, is reached for ¢~ 500.
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FIG. 3. Fourier coefficients of lﬂa(x,l‘*)=2f=7wlza!k(l‘*)€i2#k)dl‘
for t'=10% O, * correspond to aw=1,2, respectively; L=401r.

<300 and for r=200 the associated amplification o,
a=1,2, is already about 103, though ¢,(x,200), a=1,2, does
not coincide with either #,(x,10%), a=1,2, or #,(x,10%),
a=3,4. Thus, the dependence of ¢, on time makes the di-
mension of the subspace of perturbations, which can be am-
plified to say about 103 times much higher than 2 in contrast
to what could be concluded from the graphs in Fig 1. This
illustrates the complicatedness of studies of the effect of
transient amplification on short-time scales #<<300.

Fourier components of ¢,(x,t") and u,(x,t") for
£"=10? are depicted in Fig. 3. Data for graphs in Figs. 1-3
were obtained for K=256, though similar to our analysis of
the pseudospectra of A;®) in [11], first few singular

values and singular vectors of "™ are well stabilized for
K=2L/.

One may see in Fig. 1 that o,(r), @=1,2, do not decay as
time grows, apparently contradicting the asymptotic stability
of ®,(x,r). However, there is no contradiction at all, since
solutions to the Sivashinsky equation are shift invariant and
the asymptotic stability of ®,(x,r) is related to its shape
rather than location. Indeed, if ®(x,7) is a solution to Eq. (1)
with f(x,1)=0, then ®(x+C,,1)+C, is its solution too for
any real Cy, C,.

This shift invariance of Eq. (1) implies the existence of
two zero eigenvalues of the operator A; from Egs. (3); see
[6,11]. Thus, if ¢(x,0) contains contributions from eigenvec-
tors corresponding to the zero eigenvalues, then these contri-
butions to ¢(x,t)=e“Lep(x,0) will not vanish for t— <. In-
stead, e“L@(x,0) will converge to P, (x+Cy,1)+C,
—®,;(x,r) with some real C,, C,. Note that because of the
severe nonorthogonality of eigenvectors of A;, even a sub-
stantial contribution of the zero eigenvector in ¢(x,0) can be
nearly canceled out by other eigenvectors, so that ||¢(x,0)||
<1. Similarly, e"Lif,(x), a=1,2, converge to ®,(x+C,,1)
+Cy—®,(x,1) with some different values of real C,, C,, and
the corresponding o,(¢) converge to the 2-norms of the
above limits rather than to zero. Right singular vectors i,(x)
of orders higher than 2 do not include components of eigen-
vectors associated with the zero eigenvalues and correspond-
ing singular values o,(f) vanish for t— 0.

B. Nonlinear numerical simulations

The evolution of the perturbations, which grow the most
and are governed by the nonlinear Sivashinsky equation, is
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illustrated in Fig. 4. All the profiles were displaced vertically
in order to compensate for steady propagation of flames in
such a way that their spatial averages are equal to zero.
Matching graphs of the spatially averaged flame propagation
speed

1 L/2
<q)t> = _J é’,(I)(x,t)dx (8)
L -L/2

are shown as well. The initial conditions were ®(x,0)
=D, (x,0)+&t,(x,t"), where e=+1073, a=1,2, and '=10°.
The computational method used in this work was presented
in [8].

The asymmetric singular mode ¢, (x,¢") results in the ap-
pearance of a small cusp to the left or to the right from the
trough of ®;(x,0) depending on the sign of . After the cusp
merges with the trough, the flame profile converges slowly to
®, (x+Ax,1), where sgn(g)Ax>0. For a positive £=107° the
effect is illustrated in Fig. 4 (top left). Graphs of ®(x,7) for
g=—1073 are exact mirror reflections of those depicted in
Fig. 4 (top left), and graphs of (®,) are exactly the same.

The symmetric singular mode ,(x,#") produces two sym-
metric dents moving towards the trough on both sides of the
profile if £ <0; see Fig. 4 (bottom left). By £~ 500 the flame
profile returns very closely to ®,(x,#). For £>0 two small
cusps move towards the boundaries of the computational do-
main, creating a quasisteady structure shown in Fig. 4 (top
right) for r=270. This structure survives until 7= 1800, but

eventually bifurcates [see Fig. 4 (bottom right)], and the so-
lution converges to ®;(x+Ax,r), Ax<<0. It looks like the
bifurcation in question is associated with the lack of
asymptotic stability of the intermediate quasisteady structure.
As such, it was triggered by a random perturbation and could
equally result in the displacement of the limiting flame front
profile into the opposite direction Ax>0.

The behavior of perturbations i,(x,t"), a=1,2, of ampli-
tude £=10"° was not as impressive, but they managed to
produce a visible effect on the flame front profile. The same
can be said about ,(x,1"), @=3,4, of amplitude =107,
Perturbations corresponding to #,(x,t") of higher orders did
not grow significantly and did not cause any noticeable
changes to ®; for € up to 1072

Thus, the singular modes #,(x,t"), a=1,2, should be re-
sponsible for the interaction of the flame front ®,(x,r) with
all the perturbations of small enough amplitude. The time
scale of these interactions is about 300 for L=407 and is of
order O(L) in general. More singular modes ,(x,t") of
higher orders a>2 are becoming important as the amplitude
of the perturbations grows. The time scale of evolution of
od(x,1) for ¢(x,0)=4,(x,1") lessens as a grows, necessitat-
ing taking into account the dependence of #,(x,t") on " and
creating further problems in the efficient description of the
subspace of important perturbations. Therefore, there is a
critical perturbation amplitude beyond which the representa-
tion of f(x,?) in terms of the singular modes t,(x,t") is not
as beneficial as for smaller amplitudes.
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In other words, in relation to noise the Sivashinsky equa-
tion (1) works as a very sensitive nonlinear filter, responding
to very exceptional perturbations only. Those allowed pertur-
bations are hugely amplified by a linear transient mechanism
and eventually develop into cusplike structures during the
nonlinear stage of their evolution. These cusplike structures
can speed up the flame front significantly. From physical
point of view, the cusplike structures are formed by pairs of
vortexes located on both sides of the cusp just behind the
flame front. Their size is of order of the neutral wavelength
41/ y.

Calculations of this section were carried out for a variety
of flame sizes 20w =< L<280mw. Qualitatively, the results are
the same as those illustrated here for L=407. There are al-
ways two types of the mostly growing perturbations, which
can be amplified up to about e®® times; cf. [7,11]. Pertur-
bations from the orthogonal supplement are amplified at least
a few orders of magnitude less. Singular vectors t,(x,t")
scale with L, and the behavior of solutions (2) perturbed with
sz,lfa(x,t*), a=1,2, is the same as illustrated in Fig. 4. The
same quantitative effects can be observed for larger flames
using smaller values of & in proportion with =", Charac-
teristic time scales vary in proportion with L. For L=70m
round-off errors become apparent and appropriately extended
machine arithmetic with at least O(L/r) binary digits is re-
quired to reduce them to an acceptable level; see also [11].

The numerical algorithm used in this work to solve Eq.
(1) is essentially the same spectral method, which was rou-
tinely employed by many researchers earlier; see, e.g., [13].
Briefly, the computational formulas are obtained by linearly
extrapolating the nonlinear term of Eq. (1) in the Fourier
space from the subsequent time instances t,_; and 7, to the
interval [?,_;,t,,,] and then integrating the resulting linear
decoupled system of ordinary differential equations (ODE’s)
over this interval. For smooth enough solutions such an ap-
proach provides a second-order approximation in time. The
most important thing is that the approximation error is nearly
orthogonal to the subspace of the mostly growing perturba-
tions. Thus, during the linear stage, when most of the ampli-
fication takes place, the perturbation caused by the approxi-
mation residual and our special perturbations e, (x,t"),
a=1,2, are effectively decoupled and do not interfere with
each other. Further details of the impact of the high sensitiv-
ity of the Sivashinsky equation to certain perturbations on its
numerical treatment are discussed in [8].

The numerical simulations of the Sivashinsky equation
presented in this work were carried out using the time step
Ar=0.01 and the number of modes K=256 for L=<407 and
K=512 for 40w < L=<80m. The results were checked via cal-
culations with smaller time steps and larger number
of modes and were found to stabilize for Ar=<0.05 and
K=2L/m. The latter inequality can also be interpreted as a
necessity to have at least a dozen of harmonics with wave-
lengths less than the neutral one N=47/7.

III. LINEAR ANALYSIS IN THE CREST
OF A FLAME CELL

The crest is the most critical part of the flame cell from
the point of view of its stability. In particular, the graphs in
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Fig. 2 demonstrate that most intensive variations of ¢,’s oc-
cur near the crest, which is located at x=+207 in the system
of coordinates used in those graphs. Therefore, in this section
we will complement computational studies of the set of func-
tions eL¢(x,0) versus ¢(x,0) and ¢, carried out in the pre-
vious section on x € [-L/2,L/2], with analytical estimations
in a vicinity of the crest, x= +L/2.

The L-periodic steady coalescent N;-pole solution (2) can
be represented in a vicinity of the crest as ®;(x,?)
~®d,(0,1)-x*/(2R)+O(x*). Here, R is the radius of curva-
ture of the flame front profile in the crest. For large enough
L, it can be approximated as R= c;L+c,, where c; and c, are
some constants. Note that here the origin x=0 was chosen
exactly in the crest of @, (x,). Thus, d,®; =~—x/R+0(x?) in
a vicinity of x=0 and Egs. (3) are transformed into

dp+ R0, =0 b+ (¥2)oH[ 1+ fx,0).  (9)

In general, Eq. (9) is only valid in a small vicinity of x=0.
However, assuming that perturbations appear only in the
crest, one may consider Eq. (9) on —o0<<x <o over intervals
of time up to O(R); see [9].

Equation (9) can be solved exactly. Applying the Fourier
transformation we obtain

GFL Pl =R 0 F $] =~ (4 & — mlé - R F ¢)]
+ FIfIED, (10)

which is a linear nonhomogeneous hyperbolic equation of
the first order. Using the standard method of characteristics
its exact solution can be written as

FSUED =GN FTHVN( ™) + f G(&1— D]
0

X[|ge""R 7ld, (11)
where
g(é;’ l) — et/R—ZﬂTZR(eZI/R—1)§2+777R(eﬂk—1)\§| (] 2)
and F[f1(€,1t)=J",f(x,1)e”>™¢dx denotes the Fourier trans-
formation of f(x,1).
If the initial condition is a single harmonics ¢®(x)
=cos(2méyx+ ) and f(x,t) =0, then
Bx,1) = e_zﬂlR(1_6—21/R)§(2)+77yR(l—e—I/R)g()CoS(z,n.g Oxe—t/R + o).
(13)
limit

The infinite-time of Eq. (13) is

2 . . .
2T REHTYRE) o ¢ and is reached effectively on the time
scale of order O(R). This time limit attains its maximum

equal to

7R cos @ for &y=& = y/(4), matching the asymptotic es-
timation of [9]. The argument of the cosine in Eq. (13) de-
pends on time, which means that even if the initial condition
¢%(x) is a linear combination of mutually orthogonal cosine
harmonics, then the solution ¢(x,¢) will remain a linear com-
bination of cosine harmonics for >0, but those harmonics
will no longer be mutually orthogonal. This explains why the
most amplified perturbations are formed by linear combina-
tions of a few initially orthogonal harmonics and approxi-
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mate ,(x,t"), a=1,2, asymptotically for L— o. Note that
the wave number of the largest Fourier component k* of both
U (x,t%) and ¢(x,t") for £>300 is equal to & =k"/L
=1/ (4) as well; see Fig. 3.

The behavior of Eq. (13) is in a sharp contrast with the
evolution of the single-harmonics perturbations of the plane
flame front,

B(x1) = AT cos (2 + @), (14)

which grow infinitely if &< y/(4m) or decay otherwise.
They are governed by the equation associated with a self-
adjoint differential operator, which is obtained from Eq. (9)
upon removal of the term R~'xd,¢. Solution (14) does not
result from Eq. (13) for R— oo, but is only equivalent to it
when t/R<<1. The difference between Eqgs. (13) and (14) is
an explicit illustration of the nonnormality of Eq. (9) intro-
duced by the non-self-adjoint term R~'x4, ¢. Flattening of the
crests of cellular flames and bettering of their local resem-
blance with the plane front as R grows was noticed long time
ago, prompting a hypothesis of a secondary Darrieus-Landau
instability. Model (9) indicates that the hypothesis is unlikely
to be correct. Although because of the flattening of the crests
of the flame front profile perturbations of the front can be
transiently amplified at a rate rapidly increasing with R, this
transient amplification is entirely different from the infinite
growth of perturbations in the Darrieus-Landau instability of
plane flames. Moreover, the dynamics of perturbations in the
case of cellular flames does not converge to that of the plane
ones continuously in the limit R — o°.

Solution (11) and (12) for ¢(x,0)=e‘f”‘2, p>0, can be
represented in a closed form as well. Routine integration
yields

T 2 2 wbx
Plx,t) = — IR+ —47%%)/4a cos
\pa a

, b+1i2
+Re{e”ﬁ”‘/“ erf<—-;lrmc)}}, (15)
va

a=a(t) =27 R(*R - 1)+ 7?*"RIp,

where

b=b(t)=myR(e"™® - 1). (16)

Graphical illustrations of Egs. (13), (15), and (16) can be
found in [14].

The steady coalescent pole solutions to the Sivashinsky
equation correspond to the flame fronts propagating steadily
with the velocity exceeding u,=1 by V,=27NL'(y
—-47NL™"); see, e.g., [13]. Addition of the perturbation
¢(x,1) results in a change in the velocity of propagation by
the value of the space average of d,¢, which we denote (¢,).
The correction provided by the ¢(x,7) is only valid in a small
vicinity of the crest of ®;(x,¢). In sequel, the correction of
the speed (¢,) is only valid for a small region —e <x<g of
the flame front in a vicinity of the crest of ®,(x,7). Hence,
for our simplified linear model we define the increase of the
flame propagation speed as follows:
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1 &
<¢z> = 2 f dypdx = ﬂ,¢|x=0. (17)
€J ¢

For the single-harmonics solution (13) the expression for
(¢, is obvious and demonstrates the high sensitivity of {¢,)
to the wavelength of the perturbation. The phase, or location
of the perturbation, is important as well.

IV. EFFECT OF NOISE

According to the results of Sec. II, the forcing in the
Sivashinsky equation can be decomposed into the most am-
plifiable nonmodal component and orthogonal complement.
The latter can be neglected reducing spatiotemporal stochas-
tic noise to the appearance of a sequence of the most grow-
ing perturbations 1ﬁam(x,t*), I<sa,<a'=a'(fy), at a set of
time instances ¢,,, m=0,1,2,...:

f0) = fo 2 o (5,1) 01 =1,,),
m=0

l<a,<a =d(f). (18)

Thus, the amplitude of noise f,, alongside the averages and
the standard deviations of #,,,,—t,, and «,,, m=0,1,2,..., are
the only essential parameters of such a representation of
noise.

The impulselike noise (18) is used here for the sake of
simplicity. Some arguments towards its validity were sug-
gested in [2]. More sophisticated and physically realistic
models of temporal noise characteristics can be used with
Eq. (1) as well.

If << O'Il(l*), then noise is not able to affect the flame at
all and can be completely neglected. This case can be re-
ferred to as the noiseless regime. On the other hand, if f; is
comparable with the amplitude a of the background solution
®,(x,1), then almost all components of noise will be able to
disturb the flame and the f(x,?) in Eq. (1) should be treated
as a genuine spatiotemporal stochastic function. This is the
regime of the saturated noise.

Eventually, there is an important transitional regime when
the noise amplitude f; is at least of order of o' ("), but still
much smaller than a. In this case only the disturbances with
a significant component in the subspace spanned by the lin-
ear combinations of l,/la(x,l*), I<a<a", have a potential to
affect the solution. All other disturbances can be neglected,
and the force f(x,7) in the Sivashinsky equation (1) can be
approximated by Eqgs. (18) with a finite value of a". We
would like to stress that though such representation of noise
is correct for noise of any amplitude, apparently it is only
efficient if f,< o-;i(t*)<a, where o is small enough.

A. Noise in the linear model

A random pointwise set of perturbations uniformly dis-
tributed in time and in the Fourier space is a suitable model
for both the computational round-off errors and a variety of
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FIG. 5. The effect of noise (19) on (¢, for L=407 and a,,
e[0,1]; F=1, £, <[0,1] in the top and F=1/33, &,=v/(47) in
the bottom.

perturbations of physical origins. We are adopting such a
model in our analysis in the form

M(t)
flx,0) = E a,, cosQmé,x+ ¢,,) 0t —1t,,), (19)
m=1

where a,, t,, &, and ¢, are noncorrelated random se-
quences. It is assumed that 1} <St, <+ <1, <+ Sty () St,
0<¢,<2m and £,=0, m=1,2,...,M(t). Availability of
the exact solution (15) makes it also possible to study an
alternative noise model based on elementary perturbations
ame‘l’m(*'"‘m)z, which are local in physical space.

Using Egs. (11) and (12) for the zero initial condition, the
exact solution to Egs. (9) and (19) can be written as

M(1)
B(x.1) = X a,, cos[2mE, e TRy 4 @, ]

m=1

X g2 PR 1-e~20-1)/R] §rzn +myR[1-e~1n)/R] €n ( ) 0)

The expression for {(¢,) is obvious [see Eq. (17)] and is il-
lustrated in Fig. 5. Here we generated random sequences of
the time instances 7,, with a given frequency F=M(T)/T on a
time interval ¢ € [0, T]. Values of the wave number &,, and of
the amplitude a,, were also randomly generated and uni-
formly distributed within certain ranges. According to the
formula for (¢,), the effect of the phase shift ¢,, just dupli-
cates the a,,. Therefore, its value was fixed as ¢,,=0.

If values of a,, are uniformly distributed in [-1,1], then
the time average of (¢,) is obviously zero, because of the
linearity of the problem. In the Sivashinsky equation this
effect is compensated by the nonlinearity. The cusps gener-
ated by the perturbations of opposite signs move into oppo-
site directions along the flame surface (see Sec. II), though
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they both contribute to the speed positively. This effect of the
nonlinearity can be mimicked by restricting the range of pos-
sible values of the amplitudes—e.g., a,, € [0, 1 ]—as this can
be seen in Fig. 5.

Figure 5 (bottom) shows that the increase of (¢,) seen in
Fig. 5 (top) can be matched by using only the largest grow-
ing perturbations with much smaller frequency, which is
quite expected in virtue of the linearity of the problem. The
amplitude of fluctuations in Fig. 5 (top) is noticeably less
than in Fig. 5 (bottom). This is attributed to the smoothing
effect of the less growing perturbations.

Because of the linearity of the problem in question,
the effect of F=M(T)/T and L on (¢, is straightforward.
In particular, the value of {¢,) rises up to about 4 X 10® for
L=807 and other parameters the same as in Fig. 5 (top). It
should be noticed, however, that because of the limitation
a,, =0, the quantity (¢,) do no longer represents the increase
of propagation speed of the flame, but is just a measure of
the rate of transient amplification of perturbations; see also
[7.8].

Direct studies of the effect of noise in the Sivashinsky
equation necessitate use of numerical simulations. However,
because of the intrinsic discontinuity of noise, such direct
numerical simulation (DNS) are hampered with very low
accuracy of approximations, questioning the validity of nu-
merical solutions. In this work we used explicit solutions
(20) in order to validate DNS of Eq. (9) and, in sequel, of Eq.
(1). The DNS of Egs. (9) and (19) was carried out using a
spectral method briefly outlined in the end of Sec. II. The
delta function was approximated as

1
St—t,) ~——e =W 1< /F. 1)
\NTT

The calculations have shown that discrepancies between Eq.
(20) and its numerical counterparts obtained with the same
sets of ¢, a,,, and §,, might be noticeable in a neighborhood
of the time instances 7=t,,, although the averaged character-
istics like (¢,) were quite accurate. So this linear model vali-
dates the DNS of the forced Sivashinsky equation at least in
relation to the averaged flame propagation speed.

B. Sivashinsky equation

We carried out a series of computations of Egs. (1) and
(18) with ®;(x,) as initial condition and with a variety of
parameters of the noise term. Up to 12 basis functions
,(x,10%), where a was uniformly distributed in the interval
I<a<a"<12, were used. The sign of f, in Egs. (18) was
either plus or minus for every m with the equal probability
1/2 and the delta function &(¢—t,) was approximated ac-
cording to Eq. (21).

The effect of the amplitude of noise on the flame speed is
illustrated in Fig. 6. Use of only two basis functions
,(x,10%), a=1,2, gives almost the same result. Similar to
the linear model (9) the only noticeable difference was in
slightly larger fluctuations of (®,).

It was mentioned in the previous section that the wave
number of the largest Fourier component of dfa(x,103),
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FIG. 6. The effect of the amplitude of noise (18) on (®,) for
L=407. Here F=1/15 and a"=12.

a=1,2, is exactly the same as the wave number
&= v/ (4m) of the largest growing single harmonics solution
to Eq. (9). We tried to exploit this observation and simplified
Egs. (18) even further, replacing c/fa(m)(x,t*) by cos(yx/4),
which corresponds to &—i.e.,

©

4 S si-1,). (22)

m=0

flx,1) = fcos —

This kind of forcing is able to speed up the flame, but the
difference between the computational results obtained with
Eqgs. (18) and (22) is noticeable. It does not disappear even if
eight nearest sidebands are added to Eq. (22).

The time averages of (®,), denoted here as

(D)= — f " @, (23)
Lena— 10 J 4,

end 0

are depicted in Fig. 7 versus F and f,. Discrepancies in
{(®,)) for different a” did not exceed the variations caused
by the different randomly chosen sequences of 7,,, although
the effect of using Eq. (22) instead of Egs. (18) is appre-
ciable.

L SN

- W1,2
0.11| 8- o8, :

"y -cos, |

<< >>

0.09t - - » _
0.08

FIG. 7. The effect of the composition (top) and amplitude (bot-
tom) of noise on the spatiotemporally averaged flame propagation
speed ((®,)). Here L=40 and the temporal averaging was over the
interval 7 € [200,10%], f,=1073 (top), F=1/15, &"=12 (bottom).
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FIG. 8. An example of controlling the flame speed with the
amplitude of the perturbations f,. Here F=1/15, a"=12, and L
=40mr.

The correlation between the flame propagation speed and
the noise amplitude is obvious. Note that the f in the right-
most point in the graph is still about 20 times less than the
amplitude of the variation of the background solution
D, (x,1).

In accordance with the idea developed in this paper, the
value of ((®,)) is determined by the product of,. It was
shown in [7] that oce®®), resulting in (D ))=(D,))
(e®Df,). Thus, the data shown in Fig. 7 are at least in a
qualitative agreement with the dependence of ((®,)) on L,
which was obtained in [7] for a fixed noise amplitude

fo=107'% associated with the computational round-off

ITOrS.

Eventually, in Fig. 8 we present the results of an attempt
to control the flame propagation speed using our special per-
turbations ,(x,") of properly selected amplitudes. Graphs
of (®,) and ({(d,)) are shown in the top and numerical solu-
tion d(x,r) corresponding to this controlling experiment is
illustrated in the bottom. The fluctuations of the obtained
flame propagation speed are large indeed, but at least, they
appear in quite a regular pattern.

In this paper noise or forcing in Eq. (1) represents the
turbulence of the upstream velocity field, which is difficult to
manage in practice. The controlling function is more effec-
tively achieved by acoustic signals; see, e.g., [15]. Acoustics
was neglected in the evaluation of the Sivashinsky equation,
and there is no easy and straightforward way to incorporate it
back into the model. However, because of a strong coupling
between the velocity and pressure fields, effects of acoustic
signals similar to those presented here can be expected as
well.

V. CONCLUSIONS

Based on our analysis of the steadily propagating cellular
flames governed by the Sivashinsky equation we may con-
clude that there are perturbations of very small amplitude,
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which can essentially affect the flame front dynamics. The
subspace formed by these special perturbations is of a very
small dimension, and its basis can be used for an efficient
representation of the upstream velocity turbulence. These are
the very perturbations which cause the increase of the flame
propagation speed in numerical experiments. Hence, theo-
retically, they can be used to model certain regimes of flame-
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turbulence interaction and to control the flame propagation
speed on purpose.
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